Model Selection for Geometric Inference
نویسنده
چکیده
Contrasting “geometric fitting”, for which the noise level is taken as the asymptotic variable, with “statistical inference”, for which the number of observations is taken as the asymptotic variable, we give a new definition of the “geometric AIC” and the “geometric MDL” as the counterparts of Akaike’s AIC and Rissanen’s MDL. We discuss various theoretical and practical problems that emerge from our analysis. Finally, we experimentally show that the geometric AIC and the geometric MDL have very different characteristics.
منابع مشابه
Model Selection in Statistical Inference and Geometric Fitting Kenichi
Taking line tting to points in two dimensions as a typical example, we point out the inherent di erence between statistical inference and geometric tting. We describe their duality in the sense that the asymptotic properties of statistical inference in the limit of an in nite number of observations hold for geometric tting in the limit of in nitesimal perturbations. We contrast stochastic model...
متن کاملUncertainty Modeling and Geometric Inference
We investigate the meaning of “statistical methods” for geometric inference based on image feature points. Tracing back the origin of feature uncertainty to image processing operations, we discuss the implications of asymptotic analysis in reference to “geometric fitting” and “geometric model selection”. We point out that a correspondence exists between the standard statistical analysis and the...
متن کاملHow Are Statistical Methods for Geometric Inference Justified?
This paper investigates the meaning of “statistical methods” for geometric inference based on image feature points. Tracing back the origin of feature uncertainty to image processing operations for computer vision in general, we discuss implications of asymptotic analysis in reference to “geometric fitting” and “geometric model selection”. For the latter, we point out the prominent characterist...
متن کاملBayes Estimation for a Simple Step-stress Model with Type-I Censored Data from the Geometric Distribution
This paper focuses on a Bayes inference model for a simple step-stress life test using Type-I censored sample in a discrete set-up. Assuming the failure times at each stress level are geometrically distributed, the Bayes estimation problem of the parameters of interest is investigated in the both of point and interval approaches. To derive the Bayesian point estimators, some various balanced lo...
متن کاملThe CFD Provides Data for Adaptive Neuro-Fuzzy to Model the Heat Transfer in Flat and Discontinuous Fins
In the present study, Adaptive Neuro–Fuzzy Inference System (ANFIS) approach was applied for predicting the heat transfer and air flow pressure drop on flat and discontinuous fins. The heat transfer and friction characteristics were experimentally investigated in four flat and discontinuous fins with different geometric parameters including; fin length (r), fin interruption (s), fin pitch (p), ...
متن کامل